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Abstract—Distributed systems evolved to state-of-the-art so-
lutions in many areas, like test, measurement and automation
control systems. The protocol defined by the IEEE 1588 stan-
dard was designed to achieve clock synchronization among the
different components of a distributed system using an unreliable
communication network. Since any asymmetry between master
and slave impacts the synchronization accuracy, PTP software
has to compensate such asymmetries as much as possible. Our
paper studies the effects of the hardware propagation delays on
the synchronization. We present a setup that allows the direct
measurement of these time delays and show results for a PTP
clock that is generating the timestamps in the PHY and for a
second one that is creating them on a MAC level. We discuss the
characteristics of the time delays, and demonstrate the feasibility
of the setup by using the measured compensation values in a
synchronization experiment.

Index Terms—IEEE 1588, hardware propagation delay, PTP,
synchronization

I. INTRODUCTION

While many test and measurement, real-time simulation or
automation control systems become more and more complex,
distributed systems evolved to be the state-of-the-art solution
in these areas. Processing the distributed data and events
requires their merging in a timely order, so that monitoring,
analysis and measurement functions can be applied and ac-
cording actions can be taken. This leads us to the necessity
to have the same time base available throughout the whole
system, meaning that all clocks of all devices must have
approximately the same time [1]. Unfortunately, the char-
acteristics of digital oscillators present a high dependency
on factors like temperature, humidity and pressure [2]. Even
though the clocks could be initialized in sync, because of the
above mentioned hardware limitations, it becomes necessary
to continuously adjust the clocks to keep them synchronous.
This process is called synchronization [3].

In order to achieve the required synchronization, the devices
forming the distributed system must either access timing sig-
nals from a common time source, or they have to synchronize
their internal clocks in order to share a common time base [1].
The first method was extensively used in the past, as long as
the devices were close together. The second method becomes
necessary whenever the system is widely distributed and the
costs of distributing the time signal exceed a certain limit.

The Precision Time Protocol (PTP) provided by the
IEEE 1588 standard [4] was designed to fulfill synchroniza-

tion among distributed devices, connected through a non-
deterministic, multicast capable network. By achieving clock
accuracies in the sub-microsecond (and, under special cir-
cumstances, even sub-nanosecond) range, IEEE 1588 enabled
a wide range of applications in a distributed environment.
One key requirement needed to reach such accuracies is the
capability of the hardware to offer precise time-stamping
support for the PTP packets. Nevertheless, many factors, such
as oscillator stability, clock frequency, the propagation delay
through the physical layer (PHY), or any other jitter source,
have a negative impact on the synchronization accuracy. Under
these circumstances, the goal to reach better accuracy explains
the struggle for each and every improvement, even in terms
of a couple of nanoseconds.

There are a couple of different time-stamping points possi-
ble in a PTP device (see Figure 1) [5], [6]. The timestamps
can be generated in hardware (in the PHY or between PHY
and Media Access Control (MAC)) or in software (inside the
network driver or in the PTP software). To obtain a high
accuracy of the timestamps with almost no jitter at all, it is
necessary to generate the timestamps as close as possible to the
communication wire, so we consider that the best approach is
to have them generated in the PHY chip. The PTP stack will
require an interface to collect the timestamps generated for
incoming and outgoing PTP frames [5].

Our paper concentrates on the delays between the time-
stamping point and the reference plane and how to reliably
measure them. The paper is structured as follows: section II
presents the motivation why knowing the egress and ingress
delays through the hardware are important from a PTP syn-
chronization perspective, elaborating on the background of
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Fig. 1: Time-stamping points in a PTP node



the problem and on previous work. Section III presents a
measurement setup, while section IV details the obtained
results. Afterwards, the paper presents our conclusions.

II. MOTIVATION, BACKGROUND AND PREVIOUS WORK

For each sent and received event message, a time-stamp is
generated in hardware. According to [4], clause 7.3.4.2, the
time-stamp shall be the time at which the event message time-
stamp point passes the reference plane marking the boundary
between the PTP node and the network. Since timestamps are
actually generated at a point removed from the reference plane,
they are affected by ingress and egress latencies. But why
are the egress and ingress delays important? Wouldn’t it be
possible to just neglect the couple of dozens of nanoseconds
delay between the time-stamping point and the real frame start
on the wire?

It is a well-known fact that PTP assumes symmetrical wire
delays (the delay from master to slave is assumed to be equal
to the delay from the slave to the master). Any delay difference
in this direction is causing small errors that lead to worse
synchronization results. In general, the active components on
the path between master and slave, like switches, routers, but
also the PHYs of the master and the slave, are responsible for
such asymmetries. For direct connections, the major part of
the asymmetry is caused by the two PHYs, and their egress
and ingress delays will be probably different, since there
is a good chance that, coming from different vendors, they
are completely different (Figure 2). IEEE 1588-2008 already
provides support for asymmetry compensation, systematic
errors can be compensated, if the asymmetry is constant and
the jitter is small. But in order to do so, it is necessary to know
the propagation delays, or to be able to measure them, since
the protocol does not offer means to determine asymmetries.

Our first concern was to find out how big the introduced
inaccuracies would be, if we would decide to neglect the
hardware egress and ingress delays. In order to analyze these
synchronization inaccuracies, we decided to make two mea-
surements, one in which the delays were not compensated,
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Fig. 2: Asymmetric propagation delay, partially caused by the
hardware.

PPS
Master

Ethernet connection for PTP 
synchronization 

P2020RDB

PPS
Slave

OTMC100

Oscilloscope

Fig. 3: Measurement setup for the analysis of the propagation
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and one in which they were compensated (with already known
values). For these measurements, we took a simple measure-
ment setup into consideration (Figure 3): an OMICRON Lab
OTMC 100 was used as PTP master, directly connected over
100Base-TX to a P2020RDB from Freescale, that was used
as a PTP slave. Both master and slave carried out a Pulse Per
Second (PPS) output, both PPS signals being analyzed by a
Tektronix DPO4054B oscilloscope.

The results of the experiment are shown in Figure 4. We
noticed that for the uncompensated mode, even though directly
connected, the slave had problems in synchronizing to the
master with an accuracy better than +/-100 ns (which, in our
experience should be the case for directly connected PTP
nodes, when delays are compensated). We experienced a time
difference between -876 ns and -333 ns between master and
slave, with a mean value of -411 ns, and a median of -408 ns.
We can conclude that no high precision synchronization is
possible without taking the hardware delays and the introduced
asymmetry into account.

One possible way to get the egress and ingress delays is
to consult the technical data sheet provided by the hardware
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Fig. 4: Time delay between the PPS signals of the master and
the slave clock. No compensation of the ingress and egress
delays was done (mean value -411 ns, median -408 ns).



TABLE I: Adjustment values of the DP83640 PHYTER chip
from National Semiconductor

Connection type Direction Adjustment values [ns]
100Base-TX Transmit 0

Receive 215
10Base-T Transmit 95

Receive 300

vendors. The delays can be found under different terms,
depending on the vendor (e.g., adjustment value, latency): [7]
presents adjustment values for the send path to account for the
delay from the time-stamp point to the wire or for the receive
path to compensate for the delay from the wire to the time-
stamp point; [8] defines the latency of the PHY from the point
where the start of frame is detected at the SGMII interface
(MAC) to the start of frame arriving at the outgoing pins
(cable), the time-stamping point being the SGMII interface.

The data sheets that we have studied ([7], [8], and [9])
present different values for the propagation delays, for both
directions ingress and egress. The values depend on the type
of interface used (RGMII/SGMII/GMII), on the cable type
connected (electrical or fiber), and also on the link speed
(10/100/1000Mb). Some data sheets provide a minimum and
a maximum value for the propagation delay, implying the
existence of a jitter of the propagation delays. The PTP
software that is expected to make the compensation needs to
store these values and apply the appropriate average value, to
correct each timestamp.

Table I presents typical values for the propagation delays
of the DP83640 PHYTER from National Semiconductor,
obtained from the data sheet [7]. Unfortunately, the vendor
neither specifies how the values were obtained, nor under
which circumstances. Table II shows some typical values
for the VSC85xx and VSC86xx PHY families from Vitesse,
obtained also from the data sheet [8]. The vendor specifies
that the presented values were not measured, but simulated.

Since we wanted to verify the provided compensation val-
ues, we started to study possibilities how to measure the egress
and ingress delays. Under these circumstances we looked for
any other research in this area, and found but a few articles
about this topic. [10] studies the propagation delay variation on
100Base-TX Ethernet PHY chips and presents a measurement
setup for how to measure the delay. The problem with the
presented approach was to find out where the Ethernet frame
would start, so it was necessary to introduce some limitations
to solve the problem. This is why, unfortunately, the method
works only for 100Mb half-duplex connections with auto

TABLE II: Typical latencies for some Vitesse PHYs of the
VSC85xx and VSC86xx families

Connection type Direction Min. latency [ns] Max. latency [ns]
SGMII, 1000BaseT Transmit 120 132

Receive 260 292
RGMII, 100BaseT Transmit 170 200

Receive 320 380

negotiation disabled. Further, [11] analyzes the transmit and
receive delay of the PHYs, and finds out that they are vendor
specific and are different by approximately a factor of 3. Since
these delays highly depend on connection speed, cable type
and interface, we argue that a method to reliably measure
them, working under any circumstances, is needed.

III. MEASUREMENT SETUP

Figure 5 depicts a typical setup for an embedded system,
comprising of a media access controller and the Ethernet PHY.
In this setup, the timestamps t′e and t′i are taken by the PHY
and are affected by ingress and egress latencies ∆te and ∆ti.
To compensate for these delays the corrections

te = t′e + ∆te and
ti = t′i − ∆ti (1)

must be applied [4].
The PHY shown in Figure 5 offers the possibility to time-

stamp external events like a rising edge on a certain input pin
of the device. The generation of such a time-stamp is affected
by a time delay ∆tev. Furthermore, the PHY can generate
trigger signals like a rising edge at a programmed time, or a
PPS signal. Naturally, there will be a delay between the time
at which the internal clock/counter of the PHY exceeds the
programmed value and the time at which the pulse actually
egresses the output pin of the device. This delay is labeled
∆ttr in Figure 5.

To correctly apply the corrections of equation (1) (and
similar corrections for external events and triggers), the time
delays must be known. Our first attempt was to evaluate the
propagation delays by using a simple loop-back cable. In fact,
by sending a PTP packet and immediately receiving the same
packet back over the loop-back cable, we received two times-
tamps, t′e and t′i. The difference between them is the sum of
the egress delay, the ingress delay and the propagation through
the loop-back cable. But since we used a short loop-back cable
(with a propagation delay well under 1 ns), we could neglect
the influence of the cable. Unfortunately, this simple method
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Fig. 5: Typical setup for an embedded system employing a
PHY with PTP time-stamping capability. The figure shows
the time delays that affect the generated timestamps.
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helped us to find out the sum ∆te + ∆ti of both delays, but
since they are not equal (they differ approximately by a factor
of 3), it was not possible to find out the corresponding values.
Therefore, we developed a measurement setup that allows the
direct measurement of both ∆te and ∆ti.

Figure 6 shows the setup that was used to measure the PHY
delays. For our experiments, we used a Tektronix DPO4054B
oscilloscope that was equipped with the DPO4ENET option.
This option enables the oscilloscope to trigger on events
received on the Ethernet line (e.g., the start/end of an Ethernet
frame). We connected a loop-back cable to the Ethernet port
of the device under test (DUT), while the oscilloscope was
connected to the data lines of this cable using a differential
probe. In a first attempt, the scope was set to trigger on the start
of frame delimiter of a 100BaseTX Ethernet frame. However,
these settings did not work reliably, and therefore we used
the end of the MAC addresses as trigger point. A correction
was applied to the measurement results to comply with the
timestamp point definition of clause 7.3.4.1 [4]. On the DUT
we ran a test program that transmitted a PTP sync packet
over the monitored Ethernet port. The time-stamp t′e, that was
generated by the PHY on egress, was printed to the console:

t′e = T ′e,sec + T ′e,nsec · 10−9, (2)

where T ′e,sec is the seconds and T ′e,nsec the nanoseconds part of
the time-stamp. Both T ′e,sec and T ′e,nsec have positive integer
values. The same sync packet was received back over the loop-
back cable by the test program and the ingress timestamp t′i
was also printed to the console.

For the measurement of the delays ∆te and ∆ti we had to
determine the egress and ingress timestamps at the reference
plane, te and ti (see Figures 5 and 6). Since the used loop-
back cable was very short, we neglected the delay (well below
1 ns) introduced by the cable. We also defined the loop-back
cable to be the reference plane and labeled the time at which
the oscilloscope detected the packet on the cable tc:

tc = te = ti. (3)

To align the oscilloscope measurements with the clock
inside the PHY, a PPS signal was generated by the PHY

and was connected to the second channel of the scope. A
positive edge on the PPS signal marks the beginning of a full
second (Figure 7). The delay between the positive edge of
the PPS signal and the timestamp point of the sync packet
is measured using the scope’s waveform search functions. In
our measurements, the oscilloscope was configured to acquire
106 measurements at 1.25 Gigasamples per second. Thus, the
time delay can be determined with a resolution of 800 ps.
The time interval covered by the oscilloscope measurement
is 800 ps · 106 = 800µs. Consequently, the test program must
ensure that the packet is sent within a time frame of 800 µs
around the PPS pulse by polling the PTP time and sending
the sync packet in the appropriate time window. Otherwise,
the PPS pulse would lie outside the measurement range of the
oscilloscope.

The time-stamp tc is obtained from the delay measurement
of the oscilloscope (∆tscope). Since the PPS pulse is generated
at the begin of a full second and the data packet was times-
tamped at t′e = T ′e,sec + T ′e,nsec · 10−9, that is a point in time
that is within 800 µs around the PPS pulse, we conclude that
the absolute time at which the PPS pulse was generated is

Tc,sec =

{
T ′e,sec for T ′e,nsec < 500 000 000
T ′e,sec + 1 for T ′e,nsec ≥ 500 000 000

. (4)

Adding the delay measurement result of the oscilloscope,

Tc,nsec = ∆tscope · 109, (5)

yields the time-stamp of the data packet on the cable,

tc = Tc,sec + Tc,nsec · 10−9. (6)

For a correct measurement of the delay between the PPS
pulse and the data packet, the delays caused by the oscillo-
scope probes and cables must be matched. Furthermore, the
delay ∆ttr (see Figure 5) affects the result. However, we

Δtscope

CH2

Ethernet 
decoded

Sync packet

Fig. 7: Triggering on a sync packet with the oscilloscope.
Channel 2 of the scope is connected to the PPS signal
generated by the DUT. The positive edge marks the begin
of a full second. The oscilloscope’s waveform search function
is used to measure ∆tscope.



TABLE III: Measurement results for the egress and ingress delays for 100Base-TX Ethernet.

DUT Samples Direction min. [ns] max. [ns] mean [ns] median [ns]
DP83640 PHY 473 egress ∆te -19.8 -16.6 -18.6 -18.8

ingress ∆ti 232.6 235.8 234.6 234.8
P2020 MAC 340 egress ∆te -215.6 -169.0 -191.5 -191.5

ingress ∆ti 874.4 965.2 882.8 881.4

expected this delay to be very small and therefore defined
∆ttr

!
= 0. Setting ∆ttr to zero will cause a small time offset of

the internal PTP clock of the DUT to the reference time. This
offset is acceptable, since the timestamps and trigger pulses
generated by the device will remain correct (the correction
values determined in the measurement will also correct this
clock offset). The offset will only become effective if the
current time of the clock is read from software, but in this
case, software latencies, much larger than the introduced error,
will be present [12]. Furthermore, the time bases of the
DUTs and the oscilloscope must be syntonized to a frequency
reference. However, due to the precise internal time bases
of the devices and the short measurement duration (below
800 µs) the resulting error was estimated to be in the sub-
nanoseconds range. Therefore, no syntonization was done in
the measurements presented below.

Both oscilloscope and DUT were controlled from a com-
puter over Ethernet and RS232, respectively. The computer
first arms the oscilloscope’s trigger and then commands the
DUT to send a PTP sync message. It then reads the timestamps
t′e and t′i and the time delay ∆ttr from the devices. Equations
(4) and (5) yields the timestamp of the data packet on the
cable. From the timestamps, the egress and ingress delays can
be calculated as follows:

∆te = tc − t′e,

∆ti = t′i − tc. (7)

IV. MEASUREMENTS

The measurements of ∆ti and ∆te were carried out with
two different DUTs. The first device is a custom board based
on the National Semiconductor PHY DP83640 with time-
stamping capabilities in the PHY and a Texas Instruments
AM1808 system-on-chip. The second device is a Freescale
P2020RDB board, on which the PTP timestamps and the PPS
signal (see Figure 6) are generated by the MAC. Both devices
are running Linux, the test program that sends and receives the
data packets uses the PTP hardware clock infrastructure for the
Linux kernel [13]. Therefore, the code runs on both platforms
without any modifications. The loop-back cable/differential
probe was connected to the Ethernet port of the DUT. On the
devices, all programs that communicate over the network were
terminated. Thus, we ensured that only PTP event messages
from the test program were transmitted over the monitored
network port.

The results of the experiments are listed in Table III. For
the device with the DP83640 PHY we note that the results

∆te + ∆ti = −18.6 ns + 234.6 ns = 216 ns (8)

are in agreement with the values from the data sheet (Table I).
However, the egress delay ∆te is negative. This means that the
sync packets appears on the wire 18.6 ns before the time-stamp
is taken. The reasons for this may be either hidden in the time-
stamping logic of the device, or it may be caused by defining
the PPS signal output delay ∆ttr to be zero. Since the time-
stamping of the data packets is done in the PHY, very close to
the physical media, the time delays of the DP83640 are very
stable: the jitter introduced to the timestamps is very low (see
the minimum and maximum values of the measurements in
Table III).

The measurement results for the P2020RDB show a differ-
ent characteristic. The total delay over the loop-back cable is
much higher, since the time-stamping is done in the MAC.
Hence, the propagation delay of the data packets through
the entire PHY contributes to ∆te and ∆ti. Furthermore, the
delays are subject to a large jitter which deteriorates the time-
stamping performance of the setup (see Figure 8).

Very similar to the DP83640 measurement, the egress delay
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with the P2020RDB.
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Fig. 9: Synchronization accuracy of the two devices under test
with the ingress and egress delay compensation values applied.

∆te is negative, but the absolute value is much higher than for
the PHY. It is hard to believe that a delay of this magnitude
is caused by the internal logic of the device. We can only
assume that some (over-)compensation of the PHY delays is
done by the device before the timestamps are made available
to the software.

To validate the egress and ingress delays obtained from the
measurements, the experiment for the analysis of the hardware
propagation delays (Figure 3) was repeated. However, this time
the PTP stacks running on both devices were set up to perform
the delay compensation given in equation (1). The ingress
and egress delay correction values were 235 ns and -19 ns
for the DP83640-based device, and 883 ns and -192 ns for the
P2020RDB, respectively. The synchronization results (delays
between the PPS pulses of both devices) are shown in Figure
9. The mean value of the synchronization error was reduced
to -6.6 ns (median -5.8 ns). This remaining clock deviation is
in the range of the time-stamping resolution of the DUTs (8 ns
for the DP83640 and 5 ns for the P2020), which may cause a
systematic error in the measurement of the egress and ingress
delays. The results show a jitter characteristic, caused by the
PHY delays of the P2020 device. Using suitable filtering, the
synchronization performance could be further improved.

V. CONCLUSIONS

Time synchronization is one of the key requirements for a
distributed system. For a precise distribution of time using the
PTP protocol, each device must compensate the asymmetry
it introduces to the network path. Therefore, the ingress and
egress delays of PTP clocks have to be well known.

An automated measurement setup using an oscilloscope
with Ethernet decoding features can precisely decode and
time-stamp a PTP data packet on the network. Together with
the data obtained from the DUT, the time delays of interest can
be obtained. Applying the results as correction values allows
a precise time synchronization of the devices. The feasibility
of the measurement setup and the improved synchronization
performance have been demonstrated successfully.

The measurement highly depends on the capabilities of
the oscilloscope and its used option. Since the DPO4ENET

option only supports 10Base-T and 100Base-TX Ethernet,
our measurement setup can be used only for 10Base-T and
100Base-TX full-duplex connections. We had no possibil-
ity to verify our concept for 1Gb connections. Since the
measurement range of the oscilloscope was 800 µs in our
experiments, the PTP packet had to be sent within the time
window around the edge of the PPS signal. This requirement
was fulfilled by running a customized test software on the
DUT. Therefore, the measurement setup cannot be used for
verifying off-the-shelf devices that do not offer the possibility
to run custom software. However, by increasing the number of
data points that are acquired by the oscilloscope (max. 20·106),
reducing the scope’s sample rate (at the cost of lower time-
stamping resolution), and increasing the sync rate of the DUT,
we believe that a modified setup could be used for such a
verification purpose.
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